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DYNAMICS OF THE MOTION OF A BODY WITH ALLOWANCE FOR
THE UNSTEADY STATE OF THE FLOW ABOUT IT

S.M. Belotserkovskiy, Yu.A. Kochetkov, and V.K. Tomshin,
Moscow

Two methods of solving integrodifferential equations are /35"

examined -- a numerical and an approximate method based on approx-

mating transient aerodynamic functions with exponential curves.

The latter approach leads to systems of ordinary differential

equations with constant coefficients. These methods are used in

solving three problems in dynamics. Solutions of theiexact

equations are analyzed. These data are compared with the results

obtained for the hypothesis of steady-state conditions.

Several problems in dynamics involve a detailed study of

transient processes occurring when flight vehicles of different

functions travel in a continuous medium. Thus far they have been

solved even for linearized equations by resorting to additional

hypotheses, usually steady-state conditions or harmonic conditions

[1-3]. The study of the action of a turbulent medium and high-

frequency oscillations of vehicle parts and its covering, and

rapid deflections of control surfaces compensating for these ac-

tions and preventing auto-oseillations requires revisions of

existing approaches. AAeroautoelasticity is concerned with in-

vestigating these processes, with methods of flight vehicle

control, and with suppressing oscillations in vehicle parts by

means of automatic control systems. As a rule, aeroautoelasticity

can be based on linear concepts, when dimensionless kinematic

parameters (angles of attack and slip, deflections of control

surfaces, angular velocities of craft, and deformations) can be

assumed to be small compared with unity and it is possible to

* Numbers in the margin indicate pagination in the foreign text.
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P \adhere only to their first

powers, This permits exactt

linear equations to be obtained

a describing these phenomena and

O -i & relating them to nonsteady

processes 6f flow of liquid or

gas past the vehicle [4].

This article studies the
Fig. 1 linear integrodifferential

equations obtained; here , two

methods of solving are proposed -- a linear and an approximate

method based on approximating transient aerodynamic functions with

exponential curves. The latter leads to linear systems of

ordinary differential equations.

Three specific problems in dynamics are studied by these

techniques: rotational motion of the vehicle, its translational

oscillations, and the deflection of a control surface acted on by

a given torque of the drive. It is assumed that during the trans-

ientyprocess the vehicle velocity is the same. Solutions of

exact equations are analyzed; in particular, they are compared

with results based on the hypothesis of steady-state conditions.

1. Suppose a nonsteady process originates when t = 0. We /36

introduce the dimensionless time

/ (1.1)

where uo is the mean translational velocity of the body, and b

is the characteristic linear dimension (for wing or control

surface -- their largest chord).

Let qi(T) stand for the dimensionless kinematic parameters.

For a solid moving in the plane Oxy (Fig. 1), it follows that
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according to [31 we take

qt= (), q=o,(r) ,=6(), 6(r) d ( .2 )
us dg

Here a is the angle of attack,

z is the angular velocity of the body

S i 7 around the axis Oz and is the

angle of control surface deflection.

Further, we need the overall

aerodynamic characteristics of the

body c(T) (coefficients of lift cy,

I longitudinal moment mz, and hinge

moment of control surface mp). We

2 will take area as the characteristic

Fig. 2. area S for the wing or control sur-

face. The normalized conversion

functions of these characteristits cqi(T) when only the kinematic

parameter qi(T) is distinct from zero is denoted with Hcqi(_).

These functions correspond to the stepwise variation of the

kinematic parameter

j =I--'. T > 0 (1.3)

For any of these coefficients c(T), the following integral

representations obtain, which are exact within the frame of

re.ference 'of linear representations [3]L

(1.4)
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The quantity cqi(T) can be expressed also in terms of the

weighting function gcqi(w) of the aerodynamic coefficient ci

C.i (-r)= J -r,)q 5 = g/,(-t1 )qi(T-,)dT,

The weighting function gc qi(T) is equal to the characteristic

cqi(T) when the kinematic parameter qi(T) is a unit impulse, and

all$the remaining kinematic parameters are equalLto zero.

Eqs. (1W4) are obtained for the case when qi(T) varies con-

tinuous when T > 0 and has a discontinaity qi(+0) - qi(-0) when

T = 0. The steady aerodynamic derivative is denoted by cqi. If /37

we use the hypothesis of steady-state conditions, insteadoof

Eq. (1.4) we will have [3]

c T= C:q,(T~ (1.5)

Fig. 2 presents the transient functions of the coefficient of

the longitudinal moment of a parallel wing having aspect ratio

X = 2.5 for Mach number M = 0.4
They refer to the origin of co-

-ZD ---- - -- : ...........-
ordinates 0 coinciding with the

t - leading edge of the wing. The cor-

11I! responding aerodynamic derivatives

2 s 8 are

Fig, 31 ,,z -0.68, rn' -.0 6'

The transient functions of the hinge moment of the control

surfaces of Pettangular form inplhniview are shown in>,Fig. 3

(M = 1.1) and Fig. 4 (M = 2.0). The aspect ratio of each of the

control surfaces symmpt tally Larranged;on thetking is X = 2.0.

The axis of their rotation is parallel to Oz and coincides with
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1- ----- -- the leading edges. At supersonic

Si -velocities the planfdrmmof a thin wing

only partially influences mp. All

the data presented were obtained on

o /0 /J Ithe assumption that the trailing edge

of the wing is linear and coincides

Fig. 4. with the trailing edge of the control

surfaces. The control surfaces are

situated sufficiently far one from the other that there-,is no

mutual interaction between them. Their exterior ends coincide

with the lateral edges of the wing.

We have the following for the aerodynamic derivatives cor-

responding to the hypothesis of steady-state conditions:

m? ,-"32 m,,-=-2.18 -hen, 1=

, =-0.73, =--10 hen' 312.0

All the aerodynamic characteristics were obtained by numeri-

cal calculations based on the methods given in the monograph [3].

2. According to [4], let us examine in more detail the

simplest problems in the dynamics of a flight vehicle traveling

in a continuous medium.

Suppose a body moving at constant velocity u0 rotates about

the axis Oz (Fig. 1). If Iz is the moment of inertia of the body

relative to this axis, Mz is the ;aerodynamic moment, and AMz is

the moment from the spring action (for a model in avwind tunnel

or a hydraulic channel), we have

! I, -= =+AM, (2.1)
dt5



In this case

and the initial conditions of the problem are /38

a(+O)=a(-O)=ao, a'(+O)=a*(-O)=0 (22 3)

In dimensionless form, based on Eqs. (1.4), (2.1), and (2.3)

the exact linearized equations for a(T) become

r" (r)-k," H" (- g,) , -c,) d-r,-

-k, a* (a-r,s)HI (r,)dT,+ka (r) -km'a=O )

pSb' k.b
k l= k. =

21, ' IuZ

where kn is the coefficient of spring elasticity.

The approximate form of these equationsabased on the hypo-

thesis of steady-state conditions (1.4) is of the form

a(r)-km," z () -k ,m,"a() +k:a(r) =0 (2 .5 )

Suppose a flight vehicle',having mass m travels at constant

velocity u0 along the axis Ox and executes translation oscilla-

tions along the axis Oy (Fig. 1), then we have

m -= Y+AY (2.6)
dtz

Here Y is the lift and AY is the, force from spring action.

Let us convert to the dimensionless quantity
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y dn
T= ' -a (2.7)

We adopt as initial conditions

n (+0) =11(-0)= o, q'(+O)-- '(- 0)= 0  (2 .8)
- ~----A

Then the equation for the function n(T) based on Eqs. (1.4),
(2.6) and (2.7) will be

1"(T)+k' "(T-rT,)I, I'(r,)dT,+k2'q(T) =0O
0

pSb kb (C2,9)

2mn muo

The approximate equation is obtained by means of (1.5), (2.6)
and (2.7) and is of the form

q"( z k () + k'O  (r) 0-- O  / (2.10)

We obtain equations describing the motion of a control sur-

face acted on by a given torque of the drive Mk(t). Let I0 be

the moment of inertia of the control surface relative to the

axis of hinges, and let Mp be the aerodynamic hinge moment acting /39
on the control surface (Fig. 1), then we have

d26
Io = iM,+M_ (2.11)

We adopt as the initial conditions of control surface motion

6(+O)=6(-O)=O, 6'(+O)=6 (-O) =0
(2.12)
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Suppose that during control surface deflection, the velocity

oaf the origin 0 of the traveling system of coordinates, attack

angle, slip angle and angular velocities of the vehicle remain

unchanged. If they are distinct from zero, the parts of the

hinge moment corresponding to them we include in Mk(t). Thenhase

basdd on Eqs. (1.4), (2.11) and (2.12) the exact equation for

6(t) becomes

0

--mk(r)=O 0 (2.13)
pSb Mab~

k= , mA=--
21. louo"

By the hypothesis of steady-state conditions (1.,5), instead

of Eq. (2.13) we have

6"(T)-km (_r) - k m pb 6 (r) - m ( ) --O =(2 1)

3. Let us examine the system of integrodifferential equations

of the following form

q'=/ (q, ... *,q ;c,, ...., . )

(31)
c ( -- ,)II;,(Tl)dT1 (j=1, 2,...,n) (3.1)

The complexity of the numerical integration of this system

lies in the fact that the integrand in Eq. (3.1) depends on the

left-hand members of the system. Below we present a numerical

method of integrating the systems, in which iteration of the pro-

cess:.is :arried out at the last step of integration.

Let AT beuthe step of the numerical integration of system

(3.1). We set
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C.= g,.+g,

gj= q,"(T--r,)He(r,)dT, ( 3.2)

go q(T-rTt)HIleI( ,)dt,

Since the integrand in the right-hand side of the expression

for g2j is known, computing g2j poses no difficulties. Calcula-

tion of glj is one integration step of the system (3.1) is carried

outtby the iteration technique. In the first approximation, we

take the value of qj'"calculated at the preceding integration step

in T- then revised by solvingtsystem (3.1). The iterative pro-
cess is complete if the corrections prove to be smaller than the
assigned magnitude of e.

It turned out that the method has good convergence, since /40

iterations are carried out over a small time interval AT. Usually

the number of iterations is not more than three.

The second approximate method of solving systems of integro-

differential equationsilisbbased on an approximation of the transi-

ent functions Hcqi(T) by lineanacombinations of the exponential

functions

H(, )=c.,+ ,e.,
a, (3.3)

The transfer function of the functional

(3.4)
+ [q(+0)-q (-0) In(r)

gorresponding to this formula can be represented as
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1Yq, (p)=pCu -1 Ci -

p .Jp-p.i a.p+ ... +aoi

(3.5)

K In Eqsa,(3.3) and (3.5), c /A
-. _ _ and pvi are complex numbers, while

Fig. 5. . - the coefficient avi and bvi of

the transfer function are real

numbers.

I In Eq. (3.5) we separate

the constant component

dn i,,"-'+...+doi

l1".(p) . a,ip"+... +ao,

" (3.6)

- Then the output coordinate

Fig. 6. of the system (3.4) will be

determined from the equation

' G(3.7)

y,=II ,rq+y,. a,~y,i( + +a,•;yj=d ..- ,)+ t...+do , (3 7)

in which qi(T) is a kinematic parameter.

Thus, here instead of the integral relation (3.4) we have ob-

tained systems of linear differential equations with constant

coefficients (3.7). Calculations show that a fairly high quality

of approximation is achieved even when n = 2. Therefore, each

integral relation in the approximate method usually can be re-

placed by an ordinary second-order linear differential equation

with constant coefficients.
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4. The numerical

_ __ method of solving integro-

differential equations

__. I_ permitted estimating the

accuracy of the approxi-
d=t mate method based on

approximating transient

functions. Numerous cal-

Sculations showed that the

Fig. 7. difference between the

solutions obtained by

these methods does not exceed the error of approximation.

To investigate the effect of nonsteady-state conditions of

flow on the motion of the body, all the calculations werer)per-

formed in two variants: based on exact nonsteady equations and

based on equations derived on the hypothesis of steady-state

conditions. We present the results for the three problems in

dynamics examinedin Section 2.

The angular oscillations of the wing about the axis Oz ex-

tending along the leading edge for the initial angle of attack

a0 = 0.1 were studied. Figs. 5 and 6 show how the angle of attack

a varies with respect to dimensionless time T = u0 Z/b for a

parallel wing with aspect ratio A = 2.5 for Mach number M = 0.5.

In these cases the springs are absent (k2 = 0). Fig. 5 shows the

results for k 1 = 0.1 (aovery light wing in air or a heavy wing in /42

in water), while the plots in Fig. 6 correspond to kl = 0.01

(light wing in air). The number 1 denotes the exact solutions,

and the number 2 denotes solutions based on the hypothesis of

steady-state conditions.

Also, angular oscillations of differentwwings at subsonic

and supersonic flight speeds and for small values of the
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- • coefficient kl which correspond to actual

mass characteristics of wings and their

motion in air were analyzed. The initial

conditions were taken as everywhere the

same (a0 = 0.1); the following variants

S- were examined.

1. Delta wing, X = 2.5, kl =

= 2-10-3, k2 = 4.10-3, and M = 2.0.

2. Delta wing, X = 2.5, k1 =
Fig. 8. = 2-10- 3 , k2 = 4"10-3, and m = 1.2.

3. Parallel wing, X = 5.0, k1 =

= 10-3, k2 = 10- 2 , M = 0.4.

4. Parallelwwing, X = 2.5, k1 = 10- 3 , k2 = 10- 2 , M = 0.4.

The trend of the functions a(T) was everywhere close to that

shown in Fig. 6: attenuating, almost-periodic oscillations. The

periodsiof the oscillations based on exact theory and the hypo-

thesis of steady-state conditions proved to be virtually identical.

The values of the mean decrements of attenuation of the longitudi-

nal oscillations are shown in Table 1.

TABLE 1

s~utOnvaanti..... ----t h e is-'

.1 - 4 1. 1.G- I1 - 3

, t.."t -10- 3
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Translational oscillations of the wings are characterized

by the parameters -0 = 0.1, kl' = 10-3, and k 2 1pi10-2, which

correspond to the motion of the wing in air. The following

variants were studied.

1. Parallel wing-, X = 2.5 and M = 0.4.

2. Parallel wing, X = @oand M = 0.4.

3. Parallel wing, X = 2.5 and M = 0 (incompressibleimedium).

4. Parallel wing, X = - and M = 0 (incompressible medium).

Here it was also established that the motion is close to

attenuating periodic oscillations. Their periods based on the

exact and on approximate calculations was found to be virtually

the same. The valuesdf theddecrement of the translational oscil-

lations are in Table 2.

TABLE 2

solutio te -se -

I l frIO - ' 1.57. I0-'
2 3.34-107-' .35-10-
3 !.49. 10-3 1.51. 10- 3

4 2.7.I10-F- 3.110-3

In the st:udy, qf forced deflection of control surfaces, the

transient function of the normalized angle of deflection 6" was

analyzed, where the following was assumed:

7tfor>I 6m3
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1L The calculations were made when /43

- ,M = 2,0 and M = 1.1; the coefficient k

was varied from 0..l to 4. Figs. 7
So 1i and 8 show the dependences of the

normalized angle of control surface

deflection 6" on the dimensionless

time corresonding to a unit stepwise

aawi:of variation of mk(t)/mk* when

k = 0.1 (Fig. 7) and k = 4.0 (Fig. 8).

Fig. 9 Fig.s 9 and 10 contain amplitude-

frequency and phase-frequency charac-

teristics of this system. The Strouhal

number Sh = pb/uo was taken as the

O. Sh dimensionless frequency.

In control problems one is in-

P.q terested in how the increment of wing

lift is delayed with respect to the

S-2.O _ action of moment mk(T) rotating the

control surface. To answer this

2 question, one must use the solution

*_ of 6"(T) obtained and the integral re-

Fig. 10. presentation of the form (11i4) for

"cy6 and cy 6 ".
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